
Software Engineering

 1 - 1

SOFTWARE and
SOFTWARE ENGINEERING

l Engineered Software

l Controlled Configuration Item

l History of Software

Development

l Software as a Business

Opportunity

l Problems in Software

Development

l Myths about Software

Development

l Approaches to Software

Development

l Engineered Software

Development Models

l Software Engineering

Technology

Software Engineering

 1 - 2

TOPICS

The Nature and History of Software

Development

Problems with Software Development

Software Engineering Paradigms and

Technology

Software Engineering

 1 - 3

THE NATURE OF SOFTWARE

l Characteristics of Software

l Failure Curves for Hardware and Software

l Software Components

l Software Configuration

l Software Application Areas

Software Engineering

 1 - 4

l Software is programs, documents, and data.

l Software is developed or engineered; it is not

manufactured like hardware.

l Software does not wear out, but it does deteriorate.

l Most software is custom-built, rather than being

assembled from existing components.

l Software is a business opportunity.

Characteristics of Software

Software Engineering

 1 - 5

Failure Curves for
Hardware and Software

Time Time

Failure

Rate

"Infant

Mortality"

"Wear

Out"

Ideal

Actual

Change

FAILURE CURVE
FOR HARDWARE

FAILURE CURVE
FOR SOFTWARE

Software Engineering

 1 - 6

Software Components

l Software programs, or software systems, consist of
components.

l A set of components which comprise a logical unit of software is
called a software configuration item.

l Reuse and development of reliable, trusted software
components improves software quality and productivity.

l Computer language forms:

m Machine level (microcode, digital signal generators)

m Assembly language (PC assembler, controllers)

m High-order languages (FORTRAN, Pascal, C, Ada, ...)

m Specialized languages (LISP, OPS5, Prolog, ...)

m Fourth generation languages (databases, windows apps)

Software Engineering

 1 - 7

Software Configuration

Software
Project

Plan
Software

Requirements

Specification
Software
Design

Software
Test Plan and

Procedures

Data
Structures

and
Dictionary

Code

User
Documents

Software Engineering

 1 - 8

Software Development Activities

l Planning Activity

m Software Project Plan

l Requirements Definition Activity

m Software Requirements

Specification

m Software Test Plan and

Procedures

m Data Structures and Dictionary

m User Documents

l Design Activity

m Software Design Documents

m Software Test Plan and
Procedures

m Data Structures and Dictionary

l Coding and Testing Activity

m Code

m Software Test Plan and
Procedures

l Delivery and Maintenance Activity

m User Documents

m Others as needed

Software Engineering

 1 - 9

Software Application Domains

l System

m compilers

m editors

m Operating Systems

l Real Time

m machine control

m auto controls

l Business

m databases

m stock management

l Personal Computer

m all non-realtime above

l Embedded

m appliance control

m FPGA programs

m auto controls

l Engineering and Scientific

m simulation

m computer-aided design

m "number crunching"

l Artificial Intelligence

m expert systems

m neural networks

Software Engineering

 1 - 10

HISTORY OF
SOFTWARE DEVELOPMENT

l Role of Software

l Industrial View

Software Engineering

 1 - 11

Role of Software

1950 1960 1970 1980 1990

First Era

Second Era

Third Era

Fourth EraBatch Oriented

Limited

Distribution

Custom Software

Multiuser

Real-Time

Database

Product Software

Distributed

Systems

Embedded

Smarts

Low-Cost

Hardware

Consumer

Impact

Desk-Top Systems

Object Orientation

Expert Systems

Neural Nets

Parallel Computing

The explosive growth of computer speeds
and capabilities at a very low cost
fuels the demand for very complex

software and increases customer
expectations.

Software Engineering

 1 - 12

Role of Software, Continued
Where Do We Go From Here?

l Parallel computing to extend

speed of computation

l Object-oriented methods of
software design

l Software frameworks evolve to
handle larger and multiprogram
systems

l Heavy dependence on graphics
interfaces

l Artificial intelligence and neural
computing become useful

l National computing motivates
huge software systems

l Advanced programming
languages

Software Engineering

 1 - 13

Industrial View l Why does it take so

long to finish a

working software

system?

l Why are development

costs so high?

l Why can't we find all

software errors before

software is delivered?

l How can we measure

the progress of

software

development?

l How can we survive in

the global economy?

Software Engineering

 1 - 14

PROBLEMS WITH
SOFTWARE DEVELOPMENT

l Problems

l Causes

Software Engineering

 1 - 15

Problems

1. We have little data on the software
development process.

2. Customers are often dissatisfied with the
software they get.

3. Software quality is hard to define and
measure.

4. Existing software is often very difficult to
maintain.

Can these problems be
overcome?

Software Engineering

 1 - 16

Causes

l No spare parts to replace, so an error in the

original software is also in every copy.

l Software quality is a human problem.

l Project managers often have no software

development experience.

l Software developers often have little or no

formal training in engineering the development

of the software product.

l Resistance to change from programming as an

art to programming as an engineering task can

be significant.

Software Engineering

 1 - 17

SOFTWARE MYTHS

l Customer Myths

l Developer Myths

l Management Myths

Software Engineering

 1 - 18

Myth

l A general statement of

objectives is enough to get
going. Fill in the details later.

l Project requirements continually
change, but change can be
easily accommodated because
software is flexible.

Reality

l Poor up-front definition of

the requirements is THE
major cause of poor and late
software.

l Cost of the change to
software in order to fix an
error increases dramatically

in later phases of the life of
the software.

1x 1.5-6x 60-100x

Cost
to

Change

Definition Development Maintenance

Customer Myths

Software Engineering

 1 - 19

Developer Myths

Myth

l Once a program is written
and works, the developer's
job is done.

l Until a program is running,
there is no way to assess its
quality.

l The only deliverable for a
successful project is a
working program.

Reality

l 50%-70% of the effort
expended on a program
occurs after it is delivered to
the customer.

l Software reviews can be more
effective in finding errors than
testing for certain classes of
errors.

l A software configuration
includes documentation,
regeneration files, test input

data, and test results data.

Software Engineering

 1 - 20

Management Myths

Myth

l Books of standards exist in

-house so software will be
developed satisfactorily.

l Computers and software
tools that are available in-
house are sufficient.

l We can always add more
programmers if the project
gets behind.

Reality

l Books may exist, but they

are usually not up to date
and not used.

l CASE tools are needed but
are not usually obtained or
used.

l "Adding people to a late
software project makes it
later." -- Brooks

Software Engineering

 1 - 21

SOFTWARE ENGINEERING PARADIGMS

l Life Cycle

l Prototyping Model

l Spiral Model

l Fourth Generation Techniques

l Combining Paradigms

l Generic Paradigm

Software Engineering

 1 - 22

System
Engineering

Analysis

Design

Coding

Testing

Maintenance

Life Cycle

Software Engineering

 1 - 23

Life Cycle, Continued
System
Engineering

Analysis

Design

Coding

Testing

Maintenance

Is this model realistic?

Software Engineering

 1 - 24

Prototyping Model

Requirements
Gathering and

Refinement

Quick
Design

Building the
PrototypeEvaluation

of the

Prototype

Refining the
Prototype

Engineer the
Product

Start

Stop

Software Engineering

 1 - 25

Spiral Model
Planning Risk Analysis

EngineeringCustomer Evaluation

Go/ No Go
Decision

Initial

Require-

ments

Gathering

and

Project

Planning

Planning

Based on

Customer

Comments

Evaluations

Risk Analysis

Based on Initial

Requirements

Risk Analysis

Based on

Customer

Reaction

Initial Prototype

Nth-Level Prototype

Engineered

System

Toward a
Completed

System

Start

Software Engineering

 1 - 26

Fourth Generation Techniques

Requirements
Gathering

"Design"
Strategy

Implementation
Using 4GL

Testing

Software Engineering

 1 - 27

Combining Paradigms
Preliminary Requirements Gathering

Requirements

Analysis

Prototyping 4GT Spiral

Model

Design

Coding

Testing

4GT

Prototyping

Nth Iteration

4GT

Spiral

Model,

Nth Iteration

Operational System

and Maintenance

Software Engineering

 1 - 28

Generic Paradigm

1. DEFINITION PHASE
l System Analysis
l Software Project Planning
l Requirements Analysis

2. DEVELOPMENT PHASE
l Software Design
l Coding
l Software Testing

3. MAINTENANCE PHASE
l Correction
l Adaptation
l Enhancement

Software Engineering

 1 - 29

SOFTWARE ENGINEERING
TECHNOLOGY

l What is Software Engineering?

l Software Engineering Capability and Its

Measurement

l Ada Technology

Software Engineering

 1 - 30

What Is Software Engineering?

Methods

l Analysis

l Design

l Coding

l Testing

l Maintenance

Procedures

l Project Management

l Software Quality Assurance

l Software Configuration Management

l Measurement

l Tracking

l Innovative Technology Insertion

Computer-Aided Software Engineering (CASE)

l Tools which support the Methods and Procedures

Software Engineering

 1 - 31

Software Engineering Capability
and Its Measurement

l The maturity of an organization's software engineering capability

can be measured in terms of the degree to which the outcome of

the process by which software is developed can be predicted.

m Predict the amount of time required to develop a software

artifact

m Predict the resources (number of people, amount of disk

space, etc.) required to develop a software artifact

m Predict the cost of developing a software artifact

l The process and the technology go hand in hand.

l One method of measurement is the Capability Maturity Model for

Software developed by the Software Engineering Institute.

Software Engineering

 1 - 32

Increasing
Process
Maturity

Initial - Ad hoc;

unpredictable

Repeatable - Costs,

Schedules managed

Defined - Process

institutionalized

Managed - Process

measured/controlled

Optimizing - Process

refined constantly

Software Engineering

 1 - 33

Process Maturity and Technology

PROCESS MATURITY LEVELS

TECHNOLOGY
STAGES

Inefficient

Advanced

Initial

Repeatable

Defined

Managed

Optimizing

Risk

Higher
Risk

Inefficient

Target

Ideal

Transition

Path

Software Engineering

 1 - 34

Maturity Keys

Maturity Levels

Key Process Areas

Key Practices

Key Indicators

Process
Capability

Expected
Outcomes

Common
Key Features

are composed of

indicate

are estimated byhave or

lack

determineare

structured

by

Software Engineering

 1 - 35

Key Process Areas by Level
Level 2 (Repeatable)

l Requirements Management

l Software Project Planning

l Software Project Tracking and Oversight

l Software Subcontract Management

l Software Quality Assurance

l Software Configuration Management

Software Engineering

 1 - 36

Key Process Areas by Level
Level 2 (Repeatable), Continued

l Requirements Management

l Software Project Planning

l Software Project Tracking and Oversight

l Software Subcontract Management

l Software Quality Assurance

l Software Configuration Management

Software Engineering

 1 - 37

Key Process Areas by Level
Level 2 (Repeatable), Continued

l Requirements Management

l Software Project Planning

l Software Project Tracking and Oversight

l Software Subcontract Management

l Software Quality Assurance

l Software Configuration Management

Software Engineering

 1 - 38

Key Process Areas by Level
Level 3 (Defined)

l Organization Process Focus

l Organization Process Definition

l Training Program

l Integrated Software Management

l Software Product Engineering

l Intergroup Coordination

l Peer Reviews

Software Engineering

 1 - 39

Key Process Areas by Level
Level 3 (Defined), Continued

l Organization Process Focus

l Organization Process Definition

l Training Program

l Integrated Software Management

l Software Product Engineering

l Intergroup Coordination

l Peer Reviews

Software Engineering

 1 - 40

Key Process Areas by Level
Level 3 (Defined), Continued

l Organization Process Focus

l Organization Process Definition

l Training Program

l Integrated Software Management

l Software Product Engineering

l Intergroup Coordination

l Peer Reviews

Software Engineering

 1 - 41

Key Process Areas by Level
Level 3 (Defined), Continued

l Organization Process Focus

l Organization Process Definition

l Training Program

l Integrated Software Management

l Software Product Engineering

l Intergroup Coordination

l Peer Reviews

Software Engineering

 1 - 42

Key Process Areas by Level
Level 4 (Managed)

l Process Measurement and Analysis

l Quality Management

Software Engineering

 1 - 43

Key Process Areas by Level
Level 5 (Optimizing)

l Defect Prevention

l Technology Innovation

l Process Change Management

Software Engineering

 1 - 44

Ada Technology
l Ada is a computer programming language specifically designed to

support software engineering.

l Some of Ada's features include:

m All of the normal constructs for looping, branching, flow control,
and subprogram construction

m Support for enumeration types, integers, floating point, fixed point,
characters, strings, arrays, records, and user-defined data types

m Support for algorithm templates (called generics) which allow
algorithms to be expressed without concern for the kind of data on
which the algorithm is applied

m Support for interrupts and concurrent processing

m Support for low-level control, such as memory allocation

l Ada is a design language as well as a programming language.

l Ada is designed to be read by Ada programmers and non-
programmers.

Software Engineering

 1 - 45

Ada Technology, Continued

Ada
Specification

with System;

package Sensor is

 type Device is private;

 -- Abstract concept of a sensor

 procedure Define (S : in out Device;

 Where : in System.Address);

 -- Associate a sensor with memory

 function Read(S : in Device)

 return Integer;

 -- Return sensed value

private

 -- details omitted

end Sensor;

Software Engineering

 1 - 46

Ada Technology, Continued

l From the software engineering perspective, Ada helps by acting
as something much more than a programming language; Ada can
be used as a common language for communicating:

m Some aspects of the requirements

m Some aspects of the design

m All aspects of the code

l In particular, by using Ada as a design language, code is simply
realized as a complete, detailed elaboration of a design.

l For large, multi-person teams, Ada can be used as an exact,

precise way to communicate requirements and design information
-- often in a form which may be syntactically checked by a
compiler. Ada is much better than conventional English in this
regard.

